Investigating the Response of Type IV Pilins and Type IV Pilus Filaments to Applied Force using All-Atom Steered Molecular Dynamics Simulations
نویسندگان
چکیده
منابع مشابه
Steered Molecular Dynamics Simulations of a Type IV Pilus Probe Initial Stages of a Force-Induced Conformational Transition
Type IV pili are long, protein filaments built from a repeating subunit that protrudes from the surface of a wide variety of infectious bacteria. They are implicated in a vast array of functions, ranging from bacterial motility to microcolony formation to infection. One of the most well-studied type IV filaments is the gonococcal type IV pilus (GC-T4P) from Neisseria gonorrhoeae, the causative ...
متن کاملPredicting and Interpreting the Structure of Type IV Pilus of Electricigens by Molecular Dynamics Simulations.
Nanowires that transfer electrons to extracellular acceptors are important in organic matter degradation and nutrient cycling in the environment. Geobacter pili of the group of Type IV pilus are regarded as nanowire-like biological structures. However, determination of the structure of pili remains challenging due to the insolubility of monomers, presence of surface appendages, heterogeneity of...
متن کاملthe investigation of the relationship between type a and type b personalities and quality of translation
چکیده ندارد.
Fluctuations in type IV pilus retraction
The type IV pilus retraction motor is found in many important bacterial pathogens. It is the strongest known linear motor protein and is required for bacterial infectivity. We characterize the dynamics of type IV pilus retraction in terms of a stochastic chemical reaction model. We find that a two state model can describe the experimental force velocity relation and qualitative dependence of AT...
متن کاملSteered molecular dynamics simulations of force-induced protein domain unfolding.
Steered molecular dynamics (SMD), a computer simulation method for studying force-induced reactions in biopolymers, has been applied to investigate the response of protein domains to stretching apart of their terminal ends. The simulations mimic atomic force microscopy and optical tweezer experiments, but proceed on much shorter time scales. The simulations on different domains for 0.6 nanoseco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2019
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2018.11.1029